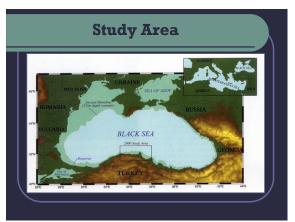
Making Sense of a Distribution of Dates

Luminescence Dating of Pottery from the Turkish Black Sea Coast

24 September, 2010

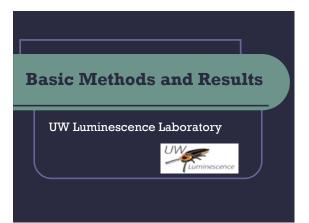

Aksel Casson McGill University

7th New World Luminescence Dating and Dosimetry Workshop

Presentation Outline

- I. Project Background and Goals
- II. Basic Methods and Results
- III. Evaluation of Data I: Luminescence
 Alpha Efficiency and b-Values
 - Qualitative 'grades'
- IV. Evaluation of Data II: Typology
 - Multi-component sites
 - Sample size

SRAP Objectives


- Understand how the Black Sea region of Turkey relates to other regional centers
- "Seeking Connections" by establishing:
 - A refined technologically-based typology of Neolithic-Iron Age ceramics,
 - The distribution of types and technological traits through the Sinop promontory, and
 - •A systematic luminescence chronology

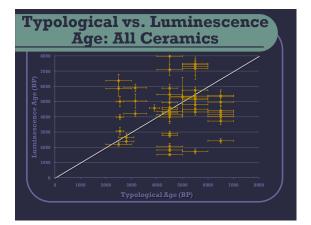
General Question

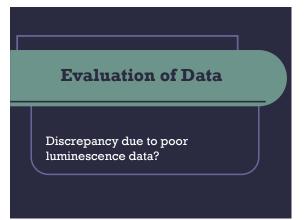
- How do absolute luminescence dates compare to typological dates?
 - Are existing regional ceramic typologies accurate in the Sinop promontory?

OSL (and IRSL) Dating of Ceramics

- Better precision and accuracy through independent lines of evidence = weighted averages
- Alternative and supplement to TL results, which may 'fade' ...
- D_E from both TL and OSL

Dating Fine-Grained Ceramics


- Fine-grained = polymineral
 - Problem: **Anomalous fading** of feldspar component
 - Loss of charge resulting in a decrease in dose-related luminescence over time.
 - Need to eliminate feldspar from OSL analysis ... Double SAR


Double SAR and Fading

- SAR = Single Aliquot Regenerative dose
- 'Double' = IRSL and OSL
 - Circumvents problem of anomalous fading
 IR exposure may remove feldspar signal from OSL
 - •Only feldspar is sensitive to IR

Dose Rate

- Beta dose rate calculated in two ways
 - Direct beta counting
 - Derivation from alpha counting
 - Assumption of secular equilibrium
 - •K content from flame photometry

Explaining Discrepancies

Luminescence results are inaccurate

OR

Typology is inaccurate

OR

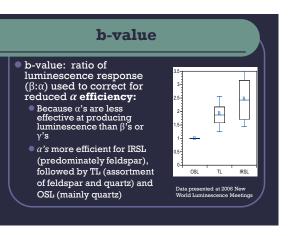
Both are inaccurate

Double SAR

- Should circumvent problem of anomalous fading
- BUT, don't know if IR eliminates ALL of the feldspar signal ... so ...
- Implemented a pulsed-OSL application

Pulsed OSL

- Takes advantage of the **time** between *stimulus* and *emission* of luminescence energy
 - •Feldspar is 'fast': ~10 microseconds
 - Quartz is much slower, mostly after 10 microseconds
- 10 microsecond 'pulse' of light stimulation should eliminate feldspar and preserve the quartz


Pulsed OSL

 Results show that pulsed D_E is same as non-pulsed D_E

•So, Double SAR probably eliminates the feldspar, *i.e.* pulsing was redundant

But, full disclosure, the error terms were quite large and small signal No feldspar?

But, this does not agree with SRAP bvalue data ...

Resolving the High b-values

Does OSL fade? High b-val suggest

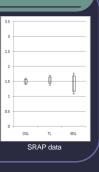
OSL:IRSI.

No correlation between high b-val and

ratios suggest little fading

low OSL:IRSL ratio

20 · 15 · 10 · 10 ·


feldspar component, but high OSL:IRSL

7 8 9 10

Observed b-values BUT, some SRAP OSL quartz b-values have been anomalously high

- anomalously high,
 approaching feldspar levels.
 AND, pulsed data agrees
 with Double SAR did not
- lower the high b-values

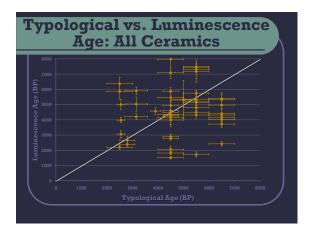
 Same results pulsed and non-pulsed
- High b-values remain unclear

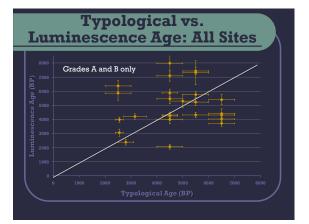
• So, anomalous fading addressed via:

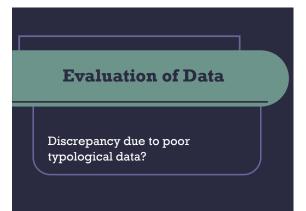
- Double SAR
- Pulsed OSL
- b-values and OSL:IRSL ratio
- → Fading is not an issue, but difficult to explain high b-vals
- But, what of the problem of TL and OSL disagreement?

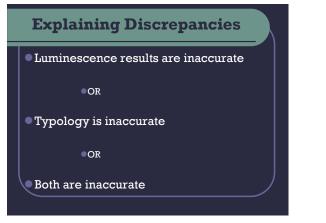
TL, OSL (dis)agreement

- 65 % of sample with agreement between TL and OSL
 Corrected TL data
- What can we say about the equivalent dose data when TL ≠ OSL?

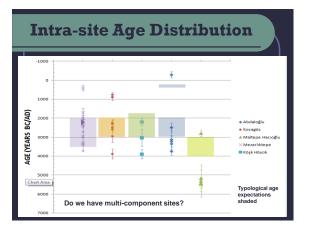

• Can't all be explained by fading • TL<OSL

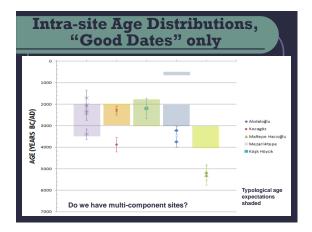

- •TL>OSL, poor firing?
- Prioritize the dates with agreement


Associated Sediment β Dose rate calculations from α are equivalent to calculation from β Relative b-values: IRSL>TL>OSL TL Plateau > 70 °C OSL D_E Error of <15% OSL Age = TL Age TL Pading


Grade Determination A: OSL=TL, and TL does not fade or can be corrected and passes all other tests B: OSL=TL, and fails just one test C: OSL=TL, but fails two or more tests or OSL=TL

D: OSL≠TL and more than two failures
 40% of sample with Grades of A or B





Typological Ages				
Iron Age	Late Middle Bronze Age	Early Bronze Age	Chalcolithic	Neolithic
1.5 – 3.5 BP	3.5 - 4.0 BP	4.0 - 5.5 BP	5.5 – 7.5 BP	7.5 – 10 BP
Tingirtepe Tepealti	Güllüavlu	Kayanın Başı Kocagöz	Güllüavlu	Mezarlıktepe
Nohutluk Köşk Hoyuk		Abdaloğlu Hacıoğlu Karapınar		
TL ag	ges, Typ	ology I	ndepen	dent
	Late Middle	Early	Chalcolithic	Neolithic
Iron Age	Bronze Age	Bronze Age		Neomine
Iron Age 1.5 – 3.5 BP			5.5 – 7.5 BP	7.5 – 10 BP
Iron Age 1.5 – 3.5 BP Kayanın Başı Tepealtı	Bronze Age	Bronze Age	5.5 – 7.5 BP Kayanın Başı Nohutluk Kocagöz	
1.5 – 3.5 BP Kayanın Başı	Bronze Age 3.5 – 4.0 BP Kayanın Başı	Bronze Age 4.0 – 5.5 BP Kayanın Başı Köşk Hoyuk Kocagöz Güllüavlu	Kayanın Başı Nohutluk Kocagöz Ha	7.5 – 10 BP
1.5 – 3.5 BP Kayanın Başı	Bronze Age 3.5 – 4.0 BP Kayanın Başı	Bronze Age 4.0 – 5.5 BP Kayanın Başı Köşk Hoyuk Kocagöz Güllüavlu Mezarlı	Kayanın Başı Nohutluk Kocagöz Ha	7.5 – 10 BP Kayanın Başı

Discussion

Problem is partly with typology

- Inadequate; luminescence is important
- When can we begin to characterize a site?
 - Especially *multi-component sites*? • Distinguish from long occupation
 - How many dates do we need? What is a sufficient sample size?
 - •Analogous to single-grain dating!

Summary

- Luminescence dates produce a revised Sinop ceramic typology
- Clarity of chronology (and strength of argument) increases with evaluation of luminescence dates
 - •Lab analysis \neq 'Black box'
- Adequate sample size per site must be defined